domingo, 16 de diciembre de 2007

miércoles, 13 de junio de 2007

Introducción al sonido

Para todos los que trabajamos Video debemos tener muy claro que el Audio ò los procesos que le apliquemos a nuestro audio le dara el toque final al video; en muchas ocaciones los editores de Audio saben muy poco de Edicion de Video y a su vez estos saben muy poco de Edicion de Audio.
Para que nuestra Produccion de Video sea una completa joya, debemos tambien poner mucha atencion al Audio, por eso recopilando informacion en la red ponemos esta pequeña Introduccion al Sonido, proximamente habran otras.

TrackRecording



ELEMENTOS DEL SONIDO PARA ESTUDIANTES DE IMAGEN: COMPARACIÓN ENTRE IMAGEN Y SONIDO


Ha hecho falta una digitalización del sonido para poder comparar el fenómeno visual con el auditivo. La primera digitalización de sonido tuvo lugar en los Laboratorios Bell de Nueva York en la década de los 70. Me he permitido esbozar una comparación, hasta cierto punto, de los elementos característicos de la imagen con los del sonido que sirve como introducción:- "Punto" equivale a "muestra". Una muestra es un registro de sonido que en teoría puede llegar a ser infinitamente pequeño. En la captación de sonido se recoge una cantidad determinada de muestras por segundo.- "Línea" equivale a "ciclo sinusoidal". Un ciclo sinusoidal es un conjunto de muestras regular, con un ascenso y un descenso partiendo de cero y llegando a cero. Al igual que líneas curvas, puede haber variaciones en la curva gráfica que muestra un ciclo sinusoidal. - "Plano" equivale a "tono sinusoidal continuado". Un tono sinusoidal continuado no se da en la naturaleza: es un pitido constante. Si un plano puede formarse por un conjunto de líneas asignadas una junto a otra, puede surgir el concepto de plano. Pero es una aproximación muy, muy vaga. Otra posibilidad es descartar la existencia del plano y considerar que el "tono sinusoidal continuado" es la línea y que el punto es "el ciclo sinusoidal", descartando la muestra como elemento cognitivo en un primer momento, hasta que se agrupa con otros. Sin duda aquí encontramos la mayor laguna de toda la comparativa.- "Color" equivale a "frecuencia". Grave o agudo equivale por lo tanto a tonos fríos o calientes. El color puede producir sensaciones igual que el tono.- "Luminancia" equivale a "intensidad" o volumen. Posiblemente es la equivalencia más clara de todas. - "Trama" equivale a "trama", porque el concepto es el mismo. La velocidad de registro de muestras determina la calidad definitiva del sonido. Existen sistemas de registro tanto analógicos como digitales con las mismas consecuencias que en el tratamiento de imágenes. Por lo tanto podemos decir que el grano fotográfico equivale muy fielmente a la cantidad de detalle de un disco, y el pixel equivale a una muestra. - "Textura" equivale a "armónicos". Sin duda la mayor satisfacción al crear esta comparativa ha sido observar cómo los equivalentes visuales de los componentes de la textura gráfica son los mismos que los equivalentes sonoros de los armónicos. Puede considerarse todo un éxito. Los armónicos son las variaciones en los ciclos que permiten crean las auténticas formas sonoras: Timbres de voz, armonías, etc. Se aplican al plano, si aceptamos que éste es un tono sinusoidal continuado, y son la combinación de frecuencia y luminancia.Otras comparaciones:- Nitidez: Existe una zona en el espectro auditivo que podemos considerar de más nitidez que el resto. Es también la parte que más llama nuestra atención, como los colores calientes. Es la zona de los 1.000 hz, como veremos más adelante. Si se oyen sonidos a diferentes frecuencias, las que se acerquen más a ésta son las que se oirán mejor. Se puede considerar que hay una tendencia natural a distinguir en ella la forma y desechar el resto como fondo.- Movimiento y secuencialidad: El sonido es una vibración que depende enteramente del tiempo para su percepción, por lo que podemos decir que no existe sin movimiento, al contrario que la imagen fija. Y como no podemos trasladar el concepto de imagen fija al sonido, tampoco podemos hacerlo con la secuencialidad.- Línea sugerida/movimiento sugerido: El hecho de que una reproducción pueda surgir de un número de muestras y que éstas formen tonos similares los que percibimos en la realidad supone un movimiento sugerido. Sin embargo debemos recordar que no existe el no-movimiento. En cuanto a las líneas sugeridas, es interesante el hecho de que si nosotros tocamos la escala en un piano podemos imaginar el tono que viene a continuación y también formamos una continuidad interna de los medios tonos si se toca lo suficientemente deprisa. Podemos ver más detalles sobre aspectos sugeridos del sonido y otros aspectos de la Psicoacústica, más adelante.- Ritmo: Sin duda queda claro que el ritmo en el ámbito del sonido es equivalente a una repetición de elementos en un esquema. No es que aporte temporalidad como en una imagen fija, sino que la refuerza.


LAS TRES DIMENSIONES


El concepto de tridimensionalidad requiere más atención que el resto de los anteriores. Para empezar, la representación gráfica de un registro de sonido es bidimensional. Pero esto no supone que una fuente de sonido sea bidimensional. Por definición, el origen de un sonido se encuentra en un solo lugar, aunque puede haber muchos orígenes de un sonido juntos o el sonido puede rebotar y distribuirse antes de llegar al perceptor. Una señal mono corresponde a un punto determinado de ese plano espacial en el que percibimos datos. Estos son por ejemplo, las radios antiguas de un solo altavoz. Nuestra escucha es biaural. Tenemos dos pabellones auditivos distribuidos a cada lado de la cabeza. Esta escucha biaural tiene como característica que podemos determinar desde qué ángulo del mismo plano se produce un sonido. Un ejemplo realmente interesante es escuchar un CD estéreo de música rock con los altavoces adecuadamente orientados. Nosotros oímos dos fuentes de sonido, pero somos capaces de reconocer que el cantante se encuentra en el centro, el guitarrista a la izquierda y el bajista a la derecha. Esto se debe a que recomponemos desde nuestros dos receptores un universo tridimensional, de una manera abrumadoramente similar a la visión estereoscópica. Es más, podemos determinar si alguien está delante o detrás gracias a muy complejos cálculos inconscientes. Nuestras orejas están orientadas algo más hacia adelante, y la percepción contrastada de los oídos de una fuente detrás de nosotros no es exactamente igual a la de delante. Este reconocimiento se ve apoyado porque no vemos al sujeto, por leves movimientos de cabeza, etc.Otro aspecto de nuestra percepción tridimensional es la falta de capacidad de determinar la altura a la que oímos. No podemos reconocer si nos hablan desde abajo o desde arriba. Otros animales, como los gatos, tienen orejas móviles, y esto supone una facultad para percibir el origen exacto del sonido. Es evidente que a ellos les hace más falta que a nosotros, por constitución física, alimentación y costumbres vitales. Volvamos a las fuentes de sonido. El reconstruir los orígenes de las fuentes en un disco en estéreo es una simulación, una sensación acústica, no es real. De hecho, es tan real como una película tridimensional. Los sistemas Surround son una simulación también. Luego veremos la historia de su evolución más detalladamente. Por ahora debemos tener en cuenta que más altavoces no aportan más realidad. Ni siquiera si estuviese un cine tapiado con altavoces sincronizados para ofrecer sonido desde todos los puntos posibles sería completamente real. Además, hay que tener en cuenta que estos sistemas, con los Laboratorios Dolby a la cabeza, no buscan tanto la realidad, sino más bien la espectacularidad.


HISTORIA DE LA BANDA SONORA


Los inicios del cine sonoro son bien conocidos y muy similares a los inicios del cine mudo, por lo que no nos vamos a centrar en ellos. Pero sí vamos a tener en cuenta que en ambos casos se consideraron al principio como poco interesantes para el gran público, sino simplemente interesantes a un nivel científico, acabaron siendo aclamados por los espectadores. También vamos a tener en cuenta otra similitud fascinante: Actualmente el sistema de reproducción tanto del sonido como de las imágenes en un cine son prácticamente similares a como fueron en sus inicios, pero con algunos cambios, como veremos más adelante. La pista de sonido óptico analógico tradicional es una banda opaca situada junto a la imagen en la película. Son una expresión gráfica del audio, unas pistas transparentes cuya anchura varía de acuerdo con las variaciones del sonido. Al pasar la película, un haz de luz atraviesa las pistas, y una célula fotoeléctrica convierte la luz en una señal eléctrica que conserva una variación similar. La señal eléctrica se procesa y se amplía hasta convertirla en el código que los altavoces reproducen. A finales de los años 20 se multiplicaron las salas que incorporaban la posibilidad de reproducir este sonido, es más, crecieron a un ritmo excesivo, porque se produjeron constantes avances que no se incorporaron a las salas, porque éstas ya acababan de invertir en la nueva tecnología. Un ejemplo se dio con los altavoces, que mejoraron a toda velocidad, optimizados para salas más grandes y para más frecuencias, y a los técnicos de sonido les asaltó una duda: Si debían optimizar el sonido para los nuevos altavoces o para los antiguos. Como dos versiones de una película eran poco rentables, hubo que sacrificar los progresos de calidad durante bastante tiempo. En los años 30 se produjo una estandarización de los sistemas de sonido y los propietarios de los cines empezaron a equipar las salas con los medios más adecuados a lo que ofrecían los estándares en la producción cinematográfica, porque sabían a qué atenerse. El resultado fue un esquema de grabación y reproducción que hizo posible que casi todas las películas sonaran aceptablemente en cualquier cine del mundo. El problema fue que el esquema carecía de flexibilidad para incorporar mejoras que superaran las limitaciones existentes en la época. Y esta situación se prolongó una década más. A principios de los 50, la industra cinematográfica buscó también en el sonido una mejora sustancial del terrible y conocido competidor que acechaba: el televisor. Se introdujo una banda magnética para el sonido, que curiosamente fue un descubrimiento muy relacionado con la propia televisión y sus sistemas electrónicos de transmisión y almacenamiento de datos. Después de imprimir la imagen, se aplicaban estrechas bandas de un material basado en óxido de hierro, la banda magnética en sí. En los estudios se grababa en tiempo real en las bandas magnéticas y supuso un avance significativo que proporcionaba una fidelidad muy superior a la del sonido óptico convencional. Además se permitió la reproducción de sonido multicanal, la voz de los actores se escuchaba desde varias fuentes, izquierda, centro o derecha según aparecieran éstos en pantalla. Esto fue un gran realce a los sistemas panorámicos visuales que surgieron por las mismas razones. Y no sólo con las voces, se logró un mayor realismo en el apartado musical, los efectos especiales de sonido resultaban mucho más creíbles, también desde la parte trasera de las salas. Los principales sistemas de sonido que se crearon son el denominado Todd-AO de 70mm con seis canales y el conocido CinemaScope de 35 mm con cuatro. Sin embargo pasaron los años y el sonido magnético, que durante las décadas anteriores floreció con las superproducciones de inmenso realismo e integración, sufrió una grave crisis en los 70. Un declive generalizado acechó a la industria y hubo que recortar gastos. El resultado fue la vuelta al sonido mono y óptico de baja fidelidad. En ese momento de crisis fue una resolución muy inteligente: la cabeza lectora de sonido óptico era conocida, económica y sencilla, y también resultan rentables los modos de captación, transporte y mantenimiento del sonido, a lo que hay que añadir que el soporte es el mismo que el de la imagen sin añadidos de ningún tipo. Por su parte la banda magnética cayó en desuso y quedó relegada a estrenos y grandes películas en sólo unas pocas salas. Los rodajes de grandes producciones se seguían grabando con la mayor calidad posible, pero sólo se hacían contadas copias con esa calidad, mientras que se optimizaba la calidad de la banda óptica en mono; por supuesto, hasta los evidentes límites que ésta tiene. Curiosamente muchos hogares disfrutaban en aquellos momentos de los sistemas de alta fidelidad, con mucha mayor calidad que las salas de cine. Durante los 80 la industria estaba viviendo una recuperación financiera y se hizo necesario un modo de volver de algún modo a la calidad de hacia 30 años. Surgieron los sistemas multicanal para algunas películas importantes. El gran avance fue la investigación de Laboratorios Dolby de un formato de sonido estéreo para películas de 35 mm, cuyo nombre es conocido por todos nosotros: Dolby Stereo. En el espacio ocupado por la pista convencional óptica mono hay dos pistas que no sólo contienen información de canales izquierdo y derecho como en sonido estéreo doméstico, sino que también contienen codificada la información para un tercer canal de pantalla (central) y un canal envolvente para sonidos de ambiente y efectos especiales. Este formato no sólo permitió usar el sonido multicanal sino que también mejoró la calidad del propio audio y supuso un gran avance en cuanto al diseño de la banda sonora: Los sistemas tenían (y tienen) códigos para ser comprendidos por lectores novedosos, pero también pueden ser asimilados por lectores antiguos para reproducir el sonido sin las ventajas adicionales. Esto supone que no es necesario cambiar el sistema reproducción sonora de un cine cada vez que surge una innovación. En cuanto a la fidelidad, hubo muchas técnicas que la mejoraban, tanto en reproducción como en grabación. Lo principales fueron la reducción del ruido Dolby A, que elimina el soplo y el sonido de fritura, característicos del sonido óptico, y la ecualización de los altavoces para ajustar el sonido del sistema a una curva de respuesta estándar. Como resultado, las películas Dolby Stereo podían reproducirse en los cines instalando procesadores Dolby, con una respuesta en frecuencia mucho más amplia y una distorsión mucho mejor que las películas convencionales. Otra ventaja del formato Dolby es que las bandas de sonido se imprimen simultáneamente con la imagen, al igual que en las anteriores películas mono. De este modo, el coste de las copias ópticas con cuatro canales no es mayor que el de las mono, y mucho menor que el de las magnéticas. El resultado, aún en los 80, fue la capacidad multicanal equivalente al de las películas magnéticas de 35 mm, que enseguida quedaron obsoletas, con una mayor fidelidad, mayor fiabilidad y menor coste. En 1986, los Laboratoriso Dloby introdujeron un nuevo proceso de grabación denominado Dolby Spectral Recording. Como sistema de reducción de ruido era un sistema de codificación-decodificación simétrico usado tanto en grabación como en reproducción. Alcanzaba una reducción de ruido equivalente al doble que el sistema Dolby A. Las bandas de sonido óptico de 35 mm tratadas con Dolby SR en lugar de Dolby A no sólo sonaban excelentemente en los cines con los nuevos procesadores SR, sino que también se podían reproducir satisfactoriamente en todos los cines con Dolby Stereo. Esto llevó a la situación actual en que prácticamente todas las copias con sonido analógico tengan el formato Dolby SR. El siguiente desarrollo de Laboratorios Dolby (que ya se había convertido en la máxima autoridad en el campo del diseño de pistas de audio) fue presentado en 1992 y pasaba ya al sistema digital. El Dolby Digital consta de una banda de sonido óptica compuesta por seis canales digitales, además de una banda analógica de cuatro canales SR. Todo ello en una película de 35 mm. Este formato fue otro avance significativo en el sonido cinematográfico que permitía cinco canales independientes (izquierdo, central, derecho, Surround izquierdo y Surround derecho) y un sexto canal para efectos de baja frecuencia (los bajos de una orquesta, golpes, temblores de tierra y todos los sonidos que precisen de un refuerzo en este campo). Además de seis canales, el formato Dolby Digital proporciona una gran capacidad dinámica, amplia respuesta en todas las frecuencias, baja distorsión y la inmunidad al desgaste similar a las películas actuales de celuloide. Hoy es el formato digital más conocido, con el que se han realizado un mayor número de películas y el que más cines de todo el mundo tienen instalado. El último avance del sistema Dolby ha sido el Dolby Digital Surround EX, que, como su propio nombre indica, añade una pista Surround extra al Dolby digital. Este canal se reproduce por los altavoces Surround de la pared trasera de las salas. Surgió en 1999 y ha sido un recurso muy solicitado para dotar de más espectacularidad a las producciones de Hollywood.


LA MÚSICA


Las funciones de la música varían según sea su origen. En este sentido diferenciamos entre música diegética; aquella que pertenece al mundo de los personajes (por ejemplo, en una escena de baile en una película de los años 50, la música de la orquesta que toca en la sala) y la música no diegética: la que existe fuera del mundo de los personajes, y por tanto ellos no la pueden oír. Aunque la función principal de la música diegética es la de suministrar apoyo y coherencia a aquello que se nos muestra en la imagen el hecho de hacerla necesaria puede ir ligado a unas intenciones más complejas del realizador (y no olvidemos que los grandes realizadores consiguen subvertir esta dicotomía -una música diegética se funde en una no diegética; un personaje comenta la no diegética...-). Sea o no necesaria, la música de una producción audiovisual puede cumplir alguna de las siguientes funciones: - Suministrar información: la letra de una canción puede explicarnos cosas que pasan, sentimientos de los personajes, etc.; también el estilo musical nos puede informar de la época y el lugar en el que se desarrolla la acción. - Captar la atención del espectador: a base de golpes orquestales, fanfarrias, sintonías de programas - Establecer el ritmo: de la edición de la imagen o del diálogo. - Mantener el flujo y la continuidad de la acción: la persistencia de una música suavizará cortes abruptos, rupturas de raccord visual. Existen determinados formatos musicales destinados a cumplir funciones específicas:- Sintonía: caracteriza inequívocamente un programa o producción audiovisual; avisa de su inicio o final. - Ráfaga: fragmento de música sin otra finalidad que la de introducir variación o distracción sonora. - Cortinilla: fragmento breve utilizado para delimitar y separar secciones de una misma producción. - Fondo o ambiente: música incidental, que suele ir mezclada con diálogos o efectos importantes, y que contribuye a mantener una continuidad anímica o estructural. - Banda Sonora: suele identificarse como tal la banda musical pero incluye también la banda de efectos y la de diálogos. Pero lo más importante de la música es que diga algo. La música sugiere. Es un hecho innegable. Es más, por eso existe. Como imagen auditiva que es, trae recuerdos de otras imágenes o de sentimientos. Vamos a observar aquí algunos de ellos en una configuración sinfónica:- Los timbales y percusiones con gran presencia de frecuencias graves y sobre tonos, depende del ritmo, si son movimientos vivos, denotan cierta tensión, angustia en algunos casos; en un ritmo medio, le dan un aire de heroicidad, de gesta, y muy lentos, dan cierto aire de solemnidad.- La familia de cuerda (violín, viola, chelo y contrabajo) se utiliza para conferir tonos románticos, apasionados o melancólicos.- La familia de madera (oboe, fagot) suele conferir tonos intimistas.- Los metales (trompetas, trombón de varas etc.) denotan ritmo, acción.- El piano es siempre un elemento para denotar soledad.- El flautín denota infancia y candidez.- La guitarra española presta siempre un aire latino. Todo esto es cuidadosamente analizado por el compositor de una obra junto al director de la película. Un autor puede dejar una voz femenina con poca carga instrumental en el momento en que hable una mujer en una secuencia romántica y volver a ella (violines, etc.) cuando habla la voz masculina. No se solapan y así se continúa con el aspecto romántico que proporcionaba la voz femenina.



LOS EFECTOS DE SONIDO


Un efecto de sonido puede considerarse como cualquier reproducción de auditiva que trate de acompañar a la acción y proporcionar realismo a una producción audiovisual. Los efectos pueden representar objetos, movimientos en el espacio o en el tiempo, estados emocionales, procesos de pensamiento, contacto físico entre objetos, escenarios, entidades irreales, etc. Éstas son los diferentes tipos que hay, según su origen:- Efectos originales: Son los procedentes de las tomas de sonido directo o sonido de producción. Estos efectos pueden ir en sincronía con determinadas imágenes o ser independientes de ellas, si bien su origen sigue siendo los lugares del rodaje. Cuando la planificación de la producción establece la grabación de sonidos originales hay que conseguirlos con la máxima nitidez sonora posible Los efectos originales tienen los inconvenientes de que es difícil hallar lugares lo suficientemente tranquilos y silenciosos que garanticen una buena grabación, y que muchos eventos naturales son poco controlables y difícilmente repetibles. Por todo ello los efectos originales a menudo requieren de algún tipo de procesado posterior antes de incluirlos en la banda sonora. - Efectos de sala: Son sonidos que reemplazan los sonidos de ambiente y los efectos que se pierden cuando se doblan diálogos o se graban en directo. En general los efectos de sala acostumbran a ser pasos, roces de ropa, ruidos domésticos, puertas que se abren y se cierran, etc., y para su grabación los estudios disponen de suelos de superficie variable. Efectos típicos de sala son los pasos de un caballo creados a partir de golpear cocos contra un suelo de tierra o de grava, la lluvia creada a partir de volcar tierra sobre un papel situado encima del micrófono, los sonidos de comida friéndose creados a partir de poner trapos mojados sobre una superficie ardiente, los truenos creados a base de sacudir un globo lleno de perdigones o bolitas de plomo, o el fuego creado arrugando papel celofán. Los efectos de sala no siempre tienen que ser lo que definitivamente vaya a sonar: posteriormente pueden procesarse o acumularse unos sobre otros hasta conseguir el tipo de sonido que mejor se adecue. - Efectos de colecciones o de bibliotecas: Las colecciones en discos son el recurso más utilizado a la hora de construir la banda sonora de una producción audiovisual. Suelen venderse en sitios especializados y están organizadas temáticamente con categorías tales como transporte, naturaleza, domésticos, electrónicos, exteriores, humanos, etc.- Efectos electrónicos o sintéticos: Oskar Fischinger desarrolló técnicas que consistían en la manipulación de la pista óptica de la película, pintándola a mano, por ejemplo. Ya en los años 50 algunos creadores de efectos de sonido construyeron máquinas especiales para generar determinados tipos de efectos, y también son de aquella época los primeros sonidos verdaderamente sintéticos. No obstante, hasta los años 70 los sintetizadores y otros dispositivos electrónicos no empezaron a funcionar a gran escala. Además empezó a utilizarse el denominado Sampler, que es un sistema electrónico para colocar efectos en tiempo real. Éstos están almacenados en una base de datos y se insertan adecuadamente. En España, el mejor ejemplo que tenemos es Crónicas Marcianas. Los sonidos pueden ser naturales, es decir, que el efecto sea el sonido del mismo objeto que lo ha producido o falseado, a esto se lo denomina "sonido característico". Es una imitación del objeto que está sonando. Un sonido característico puede reconocerse, pero no es el original de la fuente sonora sino aquél que se supone, o que se supone que el oyente puede suponer, que ha de tener la fuente sonora. La deformación o imitación de un sonido característico se hace con el fin de intensificar el impacto sobre el espectador. Un ejemplo muy interesante ocurrió en USA: durante muchos años todos los anuncios de automóviles utilizaban el mismo sonido, el de un Deussenberg del 35, debido a que su timbre no enmascaraba las voces de los locutores y realmente "parecía un coche"; para el oyente especialmente si no era demasiado entendido en sonidos de coches el efecto utilizado era apropiado, aunque no fuera el que correspondía en realidad al coche que se promocionaba. Los sonidos tienen distintas funciones en las producciones audiovisuales: - Sonidos objetivos: aquellos que suenan a consecuencia de la aparición de la imagen de un objeto que emite el sonido. Un sonido objetivo suena como se supone que sonará el objeto que aparece en la imagen (no necesariamente suena exactamente como lo hace en la realidad). - Sonidos subjetivos: aquellos que apoyan una situación anímica o emocional de la trama o de los personajes, sin que necesariamente el objeto productor del sonido aparezca en la imagen. - Sonidos descriptivos: aquellos que no representan a ningún objeto de los que aparecen en la imagen, sino que son abstracciones o idealizaciones de los sonidos supuestamente originales (aquellos que podríamos escuchar). Podemos considerarlos como sonidos metafóricos.


VOZ Y OÍDO


Está claro que el oído humano está hecho para recibir voces humanas por encima de cualquier otro sonido, si bien existen sonidos vitales distintos a los humanos que es imprescindible conocer y percibir. Un hombre de hace 300.000 años necesitaba reconocer el paso de un conejo cuando le oía. Era algo necesario para comer. Nosotros no, pero sí podemos llegar a reconocer portazos o cristales rotos, por ejemplo. La educación de la voz nos puede llegar a dar la posibilidad de distinguir a diferentes personas según la fuerza con la que pisan al andar. Unas personas pueden escuchar una pisada, otras pueden reconocer una pisada masculina de un hombre con sobrepeso. Una ventaja importante que tiene la investigación de la voz humana dentro de los parámetros de investigación del sonido es que ha sido muy estudiada gracias al interés publicitario, con el que se ha llegado a muchas conclusiones y descubrimientos fascinantes. Los límites auditivos se encuentran entre los 60 hz y los 18.000 hz. Nosotros oímos en escala logarítmica, y encontramos más diferencia tonal entre los 60 y los 80 hz que entre los 10.000 y los 10.020. Por otro lado, la mencionada educación del oído en nuestra sociedad ha impuesto a nuestra educación inconsciente una limitación mayor: entre los 80 y los 16.000. Esto significa que nosotros no oímos, a no ser que tengamos nuestra escucha educada, una frecuencia mayor de 16.000, o que sí la oímos, pero no le prestamos atención, como cuando descartamos el ruido de fondo de una zona transitada. Una prueba fehaciente de esto es que los tubos de imagen de televisores y monitores emiten constantemente un pitido a 16000 hz que nosotros no escuchamos. Sin embargo sí podemos llegar a asociar una sensación extraña en nuestro oído con la presencia de una televisión encendida. El standard auditivo comercial se encuentra en mayores franjas: 20 y 20.000. Estos son también los límites que tienen nuestros altavoces comunes. Como se ha adelantado antes, tendemos a fijarnos más en una zona del espectro sonoro. Ésta se encuentra alrededor de los 1.000 hz (entre los 300 y los 3000) y es precisamente la frecuentada por la voz humana, que aunque tiene un timbre distinto para cada individuo, es general en esa zona. Tampoco es casualidad que, si hacemos una escala logarítmica entre 20 y 20.000 nos encontremos con que 1.000 se encuentre en la mitad. Los hombres y las mujeres tienen amplitudes de voz ligeramente distintas, tanto denotativa como connotativamente. Esto nos hace reconocer una voz masculina haciendo un falsete, por ejemplo. El timbre masculino tiende a estar entre los 300 y los 2.000, el femenino entre los 500 y los 3.000. Como ejemplo de connotación, vamos a utilizar uno de los resultados que nos han proporcionado las investigaciones del sector publicitario. En él se mantiene la teoría de que la voz masculina tiene mayor poder de convicción que la femenina, y ésta tiene mayor capacidad de ensoñación. Ésta es la razón de que haya más locutores masculinos que femeninos, pero también es un motivo para que las mujeres tengan un espacio determinado reservado dentro de la publicidad igualmente importante. Y por supuesto puede haber excepciones según los locutores. Elías Rodríguez (anuncios de estrenos de Disney) y Marta Angelat (anuncio de McDonald's en respuesta al conflicto de las vacas locas durante la crisis del sector) son dos ejemplos que contradicen esta regla. Una cualidad interesante de la escucha humana es la dificultad de separar sonidos integrados. Se ha demostrado que los perros reconocen mucho mejor los sonidos, es más, si oyen un coche, pueden diseccionar todas las partes de su motor. Nosotros no podemos hacer eso a no ser que nos centremos en analizar sonidos concretos durante tiempo prolongado, y con cada nuevo sonido hay que aprender de cero (no es lo mismo el sonido de un coche que el de una orquesta). Este efecto puede deberse a que nosotros asociamos el conjunto de sonidos simultáneos de un coche a la imagen de un coche. Otro aspecto muy interesante es el del timbre del oído. Cada oído es distinto, una persona no oye lo mismo que otra, escuchamos con diferentes matices. Algunas frecuencias tienen más intensidad que otras, aunque ciertamente sí percibimos de un modo muy similar. Esto puede llevar al fascinante ejemplo de que un imitador resulte más creíble para unas personas que para otras.


POSIBILIDADES DE TRATAMIENTO DEL SONIDO


Antes de adentrarnos en las posibilidades que ofrece el control de unas muestras de audio y su tratamiento expresivo, vamos a tener en cuenta algunos recursos básicos que posibilitan el tratamiento: El efecto de reverberación, los procesos dinámicos y la ecualización. El efecto de reverberación consiste en copiar una muestra del espectro de sonido y repetirla. Existen varios parámetros que se pueden cambiar, entre ellos el tiempo que tarda en repetirse, el volumen que tiene la nueva repetición, etc. Este es posiblemente el efecto más importante del procesado de sonido. Es relativamente simple y rápido de tratar y está muy estudiado. La reproducción electrónica produce unos efectos similares a los de la naturaleza, en la que el ejemplo más claro que se puede encontrar es el del eco: Decimos algo en voz alta y se nos repite más bajo y con rasgos ligeramente distintos hasta desaparecer. Existe otro parámetro importante: La naturaleza de reflexión de sonido de la superficie en que rebota. Pero pronto veremos más utilidades de este efecto.Algunos modos de transformar el timbre basadas en retardo:- El efecto Flanger es un filtrado periódico (en forma de peine) de una serie de frecuencias determinadas por el tiempo de retardo, aunque explicarlo con palabras es poco efectivo. El origen del Flanger es mecánico: si al grabar una cinta en un magnetofón presionamos con el dedo de vez en cuando y con fuerza variable la bobina que entrega cinta originamos micro-frenazos que alteran la señal original. Si grabamos simultáneamente en 2 magnetofones, y en uno aplicamos el "flanging" manual mientras que en el otro no, generaremos el barrido característico del efecto de flanger. El flanger proporciona efectos más llamativos cuanto más rico, armónicamente hablando, sea el sonido.- Chorus se utiliza para engrosar la señal, o para simular la existencia de varios instrumentos sonando al unísono. Se simula la imperfección de un coro. En esta situación, un intérprete puede atacar con cierto retraso y desafinar ligeramente respecto a otro intérprete; eso es lo que se trata de simular, de manera compacta. Su funcionamiento es similar al del flanger (sólo que la señal que sale se filtra y se realimenta). Las transformaciones de dinámica se refieren al control del volumen y a la relación de volumen entre la señal y el ruido. Esto supone no simplemente oír con más o menos intensidad, sino que ofrece numerosas posibilidades:- Los denominados compresores dotan de intensidad a las frecuencias de menor volumen y restan a las de mayor volumen. Esto produce más fuerza a la hora de trasmitir susurros, por ejemplo, y hacen que el volumen total sea uniforme.- Las puertas de ruido eliminan las muestras de audio de menor intensidad. Estos filtros sirven para eliminar los sonidos indeseables a partir un umbral mínimo de ruido y resultan especialmente útiles.- Los limitadores consisten en que la intensidad del sonido no suba de las cotas fijadas para que no se oigan muestras más altas de lo deseable. También tiene mucha utilidad.- La normalización consiste en limitar la señal de audio y hacer que el resto del espectro se adapte a este límite. Si se pone un límite por arriba, todo el sonido se ajustará proporcionalmente. Se utiliza para que una obra prolongada o una emisión mantenga la misma intensidad constantemente.- Los extensores realizan la función contraria a los compresores: bajan las frecuencias bajas y suben las altas. La ecualización consiste en modificar alterar la señal mediante tres parámetros: Se elige la frecuencia que se va a alterar, se elige la anchura de banda por encima y por debajo de esa frecuencia y se decide cuánto se amplifica o atenúa. El efecto resulta en un realzado de unas partes de una obra. Podemos cambiar una pieza musical grabada dando más fuerza a los bajos y menos a los agudos sin alterar el volumen, porque lo subimos en una parte y lo bajamos en otra. En muchas mesas de mezclas analógicas de sonido podemos encontrar una serie de filtros que tienen una función similar a la ecualización:- Pasa-banda: dejan intacta la señal que se halle en torno a una determinada frecuencia central eliminando el resto. Sirve para elminar fragmentos pequeños de ruido.- Pasa-bajos: dejan intacta la señal que exista por debajo de una determinada frecuencia de corte eliminando el resto. Sirve para eliminar agudos.- Pasa-altos: dejan intacta la señal que exista por encima de una determinada frecuencia de corte (por ejemplo, el filtro de 80/100 Hz que habitualmente llevan las mesas de mezcla) eliminando el resto. Sirve para eliminar tonos graves.- Filtros de rechazo de banda o notch: eliminan la señal que se halle en torno a una determinada frecuencia central. Sirve para aislar un sonido concreto.- Filtros en escalón o shelving: atenúan o amplifican la señal a partir de una determinada frecuencia de corte, pero sin ser tan abruptos como los pasa-altos y pasa-bajos (los controles de graves y agudos de los amplificadores domésticos y algunas secciones de los ecualizadores de las mesas de mezclas suelen ser de este tipo). La mayoría de filtros analógicos o digitales adicionales a los anteriores consisten en combinaciones más o menos complicadas de los mismos.


UTILIDAD DEL TRATAMIENTO DEL SONIDO


Ya que nuestra mayor nitidez se encuentra en la franja en que percibimos las voces, hay que tener especial cuidado al tratarlas. Muchas formas de tratamiento y grabación pierden calidad y se hacen notar en este margen. Por lo tanto hay que tratar de mantener su calidad e incluso mejorarla. En el mundo del sonido existen equivalentes a los encuadres visuales. El concepto de planos sonoros se refiere a las relaciones existentes entre las diversas fuentes que coexisten en una banda sonora, es decir, las diferentes voces, la música y los efectos.Hay cuatro tipos de planos básicos:- El narrador: Son las voces en off que buscan cercanía al espectador. Se utiliza mucho el efecto de compresión y se le dota de más intensidad que al resto. La sensación resultante consiste en que sentimos que quien nos habla se encuentra cerca. Ésta es la función principal de los compresores mencionados antes: Cuando oímos más altas las frecuencias de poca intensidad, nos invade la sensación de que nos hablan muy de cerca. Las voces susurrantes salen muy reforzadas con este sistema. El locutor y actor de doblaje que más la utiliza en España es sin duda Salvador Vidal. - El primer plano: Cuando vemos a alguien en pantalla y debe ser el centro de atención también debe tratarse con fuerza su muestra de audio. Es la voz del protagonista manteniendo una conversación. El mezclador debe tener cuidado de que sea a él a quien se oiga principalmente, aunque haya otros sonidos de fondo. Por supuesto, también la música puede estar en primer plano.- El segundo plano: Es un concepto difícil de explicar. No es lo que llama la atención pero se oye. Puede ser una conversación en secundaria a la que no prestamos atención (o no debemos). Gosford Park muestra numerosos ejemplos. Otro caso interesante ocurre Parque Jurásico, cuando se visita la celda de los velocirraptores. Se utiliza como recurso expresivo dando un segundo plano a los personajes que están en primer plano y se va cediendo la atención a otros. También sirve de ejemplo el sonido de un televisor que no es el centro de atención. Literalmente, lo oímos en segundo plano.- El tercer plano: Consiste en el conjunto de sonidos que no tiene una relevancia especial, el ejemplo más ilustrativo es el de gente en un bar hablando sin que nos demos cuenta de qué dicen. Hay otros aspectos que tienen que tenerse en cuenta. Uno de ellos es la ambientación. Existen diferencias entre un espacio abierto y un espacio cerrado tanto en el tratamiento de la fotografía como en el del audio. Mientras, generalmente, la voz en un espacio abierto suena natural, en un espacio cerrado suena reverberada dependiendo de los materiales y la arquitectura del entorno. Existen diferentes modelos de reverberación para cada situación. Incluso los hay prefijados para habitaciones, grandes salones, etc. Otras situaciones en las que el efecto de reverberación se utiliza es para dotar de importancia a un personaje. Dios, como personaje en obras audiovisuales, ha tenido reverberación casi siempre que se ha representado en el cine. Incluso es digno de tener en cuenta el caso de El Show de Truman: Ed Harris (tanto en versión original como aquí, doblado por Salvador Vidal) susurra al final de la película a Truman. La reverberación con que le oye Jim Carrey es inmensa, y se ve un plano del cielo gigantesco, ante las palabras "soy el creador". Luego oímos la continuación de la frase "...del programa de televisión que llena de esperanza y felicidad a millones de personas". Esta parte es más digna de un dios paródico, y la reverberación desaparece, porque vemos a Ed Harris hablando por un micrófono. Un problema que no se puede solucionar es deshacer este efecto. Si se graba con un chromakey simulando un espacio abierto, hay que tener mucho cuidado de no dejar que se grabe la reverberación de la sala azul, porque actualmente es imposible de deshacer. También hay casos en los que las convenciones han dejado atrás el realismo. En las telecomedias no hay reverberación, porque originalmente se graban ante el público. Se ha comprobado en un anuncio de Páginas Amarillas que el efecto no es adecuado. El intento de simular una sitcom americana se desvanece por culpa del tratamiento del sonido en esta campaña. La ecualización se utiliza mucho para restar calidad. Esto es un recurso expresivo también importante en algunos casos: Mediante esta técnica se simulan llamadas telefónicas, voces en la radio, etc. No sólo tiene esta función expresiva, también tiene una función correctiva, porque ayuda a disminuir partes no deseables. Pero lo interesante es tratar la música con este sistema. Si se realza una parte de alta frecuencia del espectro, se da más brillo, si se realzan los bajos, quedan tonos más sombríos. Nótese una vez más que se utilizan expresiones típicas de las imágenes visuales. Para las voces también se aprovecha este sistema, realzando graves en los hombres, agudos en las mujeres y los niños o cualquier aspecto que los realizadores pretendan manipular, por ejemplo, si queremos que una persona se oiga en un segundo plano a través de una pared con suficiente calidad pero con algo de dificultad para que se le entienda. Otro asunto digno de mención es la forma de solapar música con voz. Para que la música no impida escuchar un diálogo se limita el volumen, se normaliza y luego se ecualiza reduciendo su fuerza en la zona de los 1.000 hz. El resultado es que las voces se entienden mejor, porque el oyente no tiene obstáculos que impidan reconocer bien la parte que capta nítida en el espectro, mientras que de fondo, nunca mejor dicho, se escucha la composición musical.


RUIDO Y SILENCIO


El ruido es uno de los pocos conceptos del mundo de la imagen que inmediatamente recuerdan al aspecto sonoro más que al visual. En la Teoría de la Comunicación se considera ruido al exceso de información o a la información no deseada. Esta definición es perfectamente aplicable al sonido. La forma en que el ruido se plasma en el audio es en ondas de sonido adicionales que dificultan o molestan en mensaje. Existen varios tipos de ruido: El ruido electrónico, el ruido de cinta y el ruido de fondo. El ruido electrónico es el que se genera durante el procesado electrónico en los sistemas de tratamiento de sonido. Generalmente los aparatos están preparados para producir el menor ruido posible, y en el mundo del tratamiento digital el ruido tiende a ser mínimo. No es así en los grabadores de cinta. En este grupo se incluye todo tipo de ruidos producidos por la grabación, el propio motor de la grabadora, etc. Además pertenecen a él los ruidos inseparables de una película, como ocurre con las viejas películas deterioradas. Ya hemos visto que existen métodos para eliminar este ruido, la puerta de ruido tiende a ser eficaz, además se puede registrar un ruido concreto en un momento de silencio de la cinta y casi extirparlo del resto mediante la inversión de fase. Se sabe que una muestra de audio que se solapa con una versión invertida de sí misma se anula igual que si ponemos un negativo de un fotolito con la misma imagen. Si lo que se hace es coger una muestra de supuesto silencio con ruido y restarlo de todo un fragmento de audio posterior con voces y música, el ruido desaparece con relativa facilidad. Resulta impresionante usar este recurso para eliminar todo tipo de voces o sonidos que no interesan. Y cada día se investiga más este apartado el mundo del filtrado. Pero hay que tener en cuenta que este ruido puede ser demasiado parecido a algún sonido que nos interesa. El sonido /s/ entra generalmente en conflicto con los filtrados de audio. De cualquier manera, el ruido de fondo es habitual y característico en las películas. No es lo mismo grabar un momento de silencio en un parque que en un sótano. Es más, si eliminamos ese ruido, el resultado es irreal. Debe haber un ruido a no ser que se pretendan dar unas circunstancias concretas. El silencio podemos entenderlo como un tipo de sonido especial. Su uso dosificado puede generar expectación, o un gran impacto emotivo cuando el desarrollo lógico de la escena hace esperar un sonido fuerte. Un tratamiento objetivo del silencio es la ausencia real de sonido en la narración cuando no hay imagen que justifique un ruido. El tratamiento subjetivo es utilizar el silencio para crear un ambiente emocional concreto. Además de generar expectación o de contrastar escenas o mensajes visuales puede llegar a comunicar situaciones de desolación, muerte, emociones desagradables... pero también tranquilidad o distanciamiento. Matrix es una de las pocas películas que se han hecho con fragmentos sin absolutamente nada de ruido. La sala blanca completamente vacía donde se encuentran los dos protagonistas pretende resultar falsa, increíble, y lo consigue mediante diálogos completamente limpios de ruido y silencios absolutos. En otros casos resulta interesante la necesidad de buscar un ruido de fondo para dar más credibilidad. Esto ocurre con la restauración de los clásicos y en ocasiones, con nuevos doblajes que se hacen de ellos. Si la música contiene un ruido concreto, debe tenerse cuidado de que las nuevas voces no contrasten con ellas, y debe añadirse un ruido que no se sume al original pero que tenga el suficiente nivel para ser reconocido.



FUTURO


Actualmente se está trabajando en muchas posibilidades que algún día verán la luz (u oirán el sonido) en la grabación, producción, y reproducción con posibilidades fascinantes. Los límites que se tienen ahora están desapareciendo porque se centran en campos como la velocidad de transmisión de datos, que progresan a pasos agigantados. Ya es posible crear voces virtuales y alterar las existentes, pero sólo son experimentos de laboratorio con muy poca salida comercial, de momento. Warner Bros trató hace años de reproducir la voz del desaparecido Mel Blanc (actor que dio voz a todo el elenco animado de la compañía) para un especial de los Loney Tunes y lo consiguió, utilizando a un actor distinto y tras una enorme inversión. George Lucas trató que el La Amenaza Fantasma tuviese un doblaje automático para cada idioma utilizando los registros de sus actores originales, pero desechó la idea porque los resultados quedaban demasiado planos y sin vida. En el mundo del audio digital hay un dogma: Todo es matemáticamente posible.Dentro de unos años veremos un nuevo mundo de posibilidades creativas:- Síntesis de voz partiendo de cero- Variación del timbre de voz de una grabación- Sonido real en tres dimensiones- Posibilidad de rejuvenecer y envejecer voces- Emisiones de radio digital en Surround- Música sintética en Surround.- Estándares de grabación de DVDs audio en 5:1 con cotas de calidad y capacidades nunca vistas. Pero quizás lo más fascinante es que la otra gran máxima del mundo del sonido es que va 10 años por delante del vídeo. ¿Quiere decir esto que, si hoy podemos reproducir la voz de Humphrey Bogart, dentro de 10 años podremos reproducir su rostro? Sin duda, sí.

Bibliografía:
SONIDO PROFESIONAL, CLEMENTE TRIBALDOS, EDIT PARANINFO 1993
SONORIZACION DE PELICULAS, LB NERONSKY, ED BOIXAREU 1975
TECNICA DE SONIDO CINEMATOGRAFICO, RAMON ROSELLO, EDITORIAL FORJA 1981EL SONIDO, JJ MATRAS, ED ATENEO 1979REFUERZO DE SONIDO, MICHAEL ROBERTS, ED PARANINFO 1997AUDIO PROFESIONAL, GUY MALGORN, ED PARANINFO

Páginas web visitadas:http://www.galeon.com/audiosonido/audiosonidoh.htmlhttp://www.audiotest.org/ http://filmsound.studienet.org/ http://filmsound.studienet.org/ http://www.free-n-cool.com/freecsnd.html/ http://personal.redestb.es/azpiroz/http://www.eldoblaje.com/

Conceptos básicos de vídeo digital

Introducción



En el apacionante mundo del video digital. debes tener en cuenta que trabajar con vídeo en la computadora, es bastante complejo, A la hora de "capturar" con nuestro vídeo doméstico, sólo tenemos que elegir el canal, darle al "Rec" y listo, pero cuando se trata de capturar, comprimir o exportar vídeo en el ordenador la cosa no es tan sencilla. Deberemos configurar numerosos parámetros para capturar,. editar, exportar y, llegado el caso, realizar un DVD o CD de vídeo y, lo peor es que, no sólo hay infinidad de opciones dentro de cada uno de esos parámetros, sino que hay sutiles diferencias que pueden volverte loco.
Este manual Que se ha recopilado de diferentes fuentes en internet pretende ser una guía de referencia de los términos más comúnmente usados a la hora de trabajar con vídeo digital. Sin saber qué significan es bastante complicado lograr en nuestros vídeos la mejor calidad posible o, peor todavía, puede que obtengamos vídeos imcompatibles con el formato que deseemos. Espero que esta guía de referencia te sea de utilidad para cuando trabajes Video.



TrackRecording



Características del vídeo digital



Lo primero a tener claro, es que todo lo que trabajamos en la computadora es digital. Si escaneamos una foto, la pasamos de formato analógico a formato digital. Si grabamos con un microfono a la computadora, pasamos la voz a formato digital, y si capturamos imágenes desde el televisor, estamos transformando el vídeo de formato analógico a formato digital. Un DVD YA está en formato digital, de modo que hacer cualquier cosa con él será trabajar con vídeo digital.
Una Computadora sólo sabe trabajar con ceros y con unos (dígitos) de modo que cualquier cosa que le llegue del exterior, ha de transformarse a ceros y unos para que ella se entienda. Una imagen de vídeo en un televisor está compuesta de líneas (625 líneas para un televisor PAL, el formato usado en Europa, 525 para un televisor NTSC, el formato usado en casi toda América y Japón) pero una imagen digital está compuesta de píxeles, o puntos. Una imagen será de más calidad cuantos más puntos tenga. Una Computadora puede trabajar con imágenes de CUALQUIER tamaño, pero hay unos estándares a los que conviene adaptarse si queremos que nuestro vídeo se reproduzca, no sólo en las computadoras, sino también en televisores a través de DVD's o CD's de vídeo, en cualquiera de sus posibles formatos que veremos más adelante. Para adaptar nuestro vídeo a esos estándares hemos de ajustar los parámetros que veremos a continuación



Tamaños de pantalla


Todos sabemos que cuanta más resolución tenga una imágen mejor, más definición tiene. Eso se comprueba claramente a la hora de ampliarla: si la resolución es escasa, al ampliarla a pantalla completa se verán esos famosos "cuadrados" que, cuanto más ampliemos más grandes se verán. Es el efecto de "pixelación". Todas las imágenes digitales están compuestas por puntos. Cada punto es la parte más pequeña que un monitor es capaz de representar y ese punto representa un sólo color. Dependiendo de la profundidad de color a la que trabajemos, tendremos: 16, 256 (8bits), 65.536(16bits), 16.777.216 (24 bits) o 16.777.216 con canal alpha dedicado a trabajar con transparencias (32 bits). Si aumentamos una imágen de 640x480, por ejemplo, hasta 800x600 la computadora necesita 160x120 puntos que NO están en la imágen original y que, por tanto, se tiene que inventar. Aunque mediante técnicas de interpolación la computadora puede calcular el color más probable para esos píxeles de "relleno" es evidente que cuanto más ampliemos, mayor será el número de píxeles inventados y la imágen se corresponderá menos con la original.

Hasta aquí parece que "cuanto más grande, mejor". Pero eso no es siempre cierto. El principal factor a tener en cuenta a la hora de elegir el tamaño de captura es el destino final de nuestros vídeos. Los destinos más comunes para dar salida al vídeo son VHS, VídeoCD, SuperVCD, ChinaVideoDisc DV y DVD. Los tamaños de captura para cada uno de estos destinos son:
- VHS - 300x360 (Por compatibilidad, el VHS se suele capturar con el mismo tamaño que el VCD)

- VídeoCD (VCD) - 352x288 PAL, 352x240 NTSC
- SuperVCD (SVCD) - 480x576 PAL, 480x480 NTSC
- ChinaVideoDisc (CVD) - 352x576 PAL, 352x480 NTSC
- DV y DVD - 720x576, 720x480 NTSC

Imaginemos que tenemos una capturadora que nos permite capturar a 720x576. Puede que nos "frotemos las manos" al pensar que podemos capturar en formato DVD. Ahora bien, si la fuente de la captura es VHS ó Vídeo-8 tendremos una fuente de vídeo con una resolución de 300x360. Si le pedimos a la capturadora que nos capture a 720x576 lo único que hará será ampliar la señal de orígen de 300x360 hasta los 720x576 que le hemos pedido "inventándose" los 420x216 puntos que faltan en la imágen original, es decir, tendremos casi más píxeles inventados que reales. ¿Verdad que no merece la pena?

Pero es que, además, si el destino final de nuestra edición va a ser de nuevo VHS o Vídeo-8, resulta que en esas cintas "no cabe" vídeo de 720x576, por lo que, de nuevo, habrán 368x288 que, simplemente, se perderán y, aunque es algo que no he comprobado, no creo que se pierdan exáctamente los mismos píxeles que se añadieron a la señal original.


Conclusión: hemos gastado más del doble de espacio, hemos tardado más del doble de tiempo en hacer los renders y, finalmente, hemos conseguido tener un vídeo de menor calidad que si lo hubiéramos capturado a 352x288. Como he comentado anteriormente, para pasar un vídeo 352x288 a pantalla completa necesitamos casi el doble de píxeles de "relleno". Da lo mismo si estos píxeles están en la captura, en el archivo vídeo, o si los pone la computadora al reproducir. Hagamos caso. Tan sólo merece la pena capturar a 720x576 si capturamos directamente de una televisión digital o si la señal procede directamente de una cámara DV o un DVD.


Una de las cosas que más confunden al respecto y que más hacen pensar que esta afirmación no es cierta es el hecho de que en monitor de nuestra computadora los vídeos de 352x288 aparecen como una ventana bastante pequeña que, para ver a pantalla completa, necesitamos ampliar considerablemente con la consiguiente pérdida de calidad. Eso es sólo verdad a medias. Sí que es cierto que en nuestro monitor la calidad no es óptima, pero demos de tener en cuenta que el monitor de un ordenador está compuesto por puntos, mientras que cualquier televisor está compuesto por líneas, en concreto, 625 líneas para el sistema PAL o 525 para NTSC.Por eso, aunque en nuestro monitor la calidad VHS deje bastante que desear, al pasarla de nuevo a VHS o VCD tendremos la máxima resolución para estos medios y, por lo tanto, tendremos la máxima calidad posible por extraño que resulte.


Flujo de datos (bitrate)

Un factor determinante en la calidad final del vídeo es el flujo de datos. Se llama así a la cantidad de información por segundo que se lee del archivo de vídeo para reproducirlo. Al igual que con el tamaño de imágen, a mayor flujo de datos,. mejor calidad de imágen, pero hay que tener en cuenta que el flujo de datos es, en muchas ocasiones, más importante que el tamaño y capturas de gran tamaño pero poco flujo de datos pueden llegar a tener una calidad realmente desastrosa. Un VCD, de 1150 kbits/s y 352x288 se verá mejor que uno de 720x576 y 300 kbits/s, por ejemplo. Aunque el tamaño de pantalla sea mayor, el escaso ancho de banda para los datos hacen que para guardar la información de luminancia y color del vídeo sea necesario agrupar muchos píxeles con la misma información degradando la imágen rápidamente. El efecto resultante, es parecido al que conseguimos aumentando una imágen de baja resolución.
Por cierto, es muy frecuente confundir KByte (KB) con Kbit (Kb). Un byte es un "octeto" de bits, es decir, cada 8 bits tenemos un byte. O sea, que los 1150 Kbit/s son, en realidad poco menos de 143 KBytes/s

Flujo de Datos Constante (CBR - Constant Bit Rate)


¿Tienes un CD grabable a mano? Míralo. Verás que pone 650MB - 74 Min. Es decir, tiene una capacidad de 650 MB que equivalen a 74 minutos de audio. Hay un flujo constante de 150 KB/s, suficientes para suministrar toda la información necesaria de audio. Si tenemos en cuenta que para poder registrar TODA la información de un vídeo PAL a pantalla completa (720x576) necesitamos un CBR (Fujo de Datos Constante) de 32.768 KB/s entendemos pronto el porqué de la compresión a la hora de trabajar con vídeo. Una hora de vídeo a pantalla completa sin comprimir son 115.200 MB.


El principal inconveniente del CBR se presenta a la hora de capturar con compresión. Uno de los principales métodos de compresión (el MPEG) basa su compresión, además de comprimir la imágen fija, en guardar los cambios entre un fotograma (o fotogramas) y el siguiente (o siguientes). Aunque el flujo de datos sea escaso, no tendremos problemas de calidad en escenas con poco movimiento y pocos cambios de imágen entre fotograma y fotograma. El problema llega con escenas de acción en las que la cámara se mueve con rapidez y un fotograma es muy, o totalmente diferente, del anterior o el siguiente. En ese caso, el ancho de banda necesario para guardar los cambios entre fotograma y fotograma crece considereablemente y queda menos espacio para comprimir la imagen, deteriorándola notablemente, tanto más cuanto menor sea el flujo de datos.


Este es el principal problema del VCD y lo que nos lleva a todos de cabeza. El VCD usa CBR de 1150 Kbit/s para el vídeo y 224 para el audio, aunque yo aconsejo rebajar el audio a 128 Kbit/s y ampliar el vídeo a 1246 Kbit/s puesto que este formato también es compatible en la mayoría de los casos con el formato VCD al no pasar de los 1347 Kbit/s de CBR que se especifican en su estándar. Con un flujo de datos de vídeo tan bajo, cualquier incremento es realmente de agradecer.


Flujo de Datos Variable (VBR - Variable Bit Rate)


El único inconveniente del Flujo de Datos Variable (VBR) es que no podremos predecir cuál será el tamaño final exacto de nuestros archivos (aunque sí podemos conocer el máximo o mínimo), todo depende de la complejidad del vídeo puesto que, como su nombre sugiere, el flujo de datos varía dependiendo de la complejidad de las imágenes a comprimir. Si el vídeo tiene poco movimiento, conseguiremos bastante más compresión que con CBR pero, si por el contrario el vídeo contiene muchas secuencias de acción, el tamaño final del vídeo puede ser sensiblemente mayor que usando CBR, pero a cambio habremos preservado la calidad.

Cuando trabajamos con CBR basta con especificar el flujo de datos que queremos que tenga nustro vídeo, pero cuando trabajamos con VBR tenemos varias opciones:



1. Especificar un valor medio al que el programa con el que trabajemos tratará de ajustarse en la medida de lo posible, proporcionando un flujo mayor para escenas complejas y reduciéndolo en escenas más tranquilas.
NOTA: La mayoría de compresores no nos dejarán usar esta opción a no ser que elijamos comprimir a doble pasada


2. Determinar valores máximo y mínimo. En esta ocasión eliminamos el "criterio" del ordenador para marcar los límites por encima y por debajo.


3. Establecer una opción de calidad de la imágen que se deberá de mantener sin importar el flujo de datos. Si queremos calidad, esta será siempre la opción a utilizar, puesto que siempre usará el flujo de datos mínimo necesario para preservar la calidad especificada. De este modo, evitamos el efecto que se produce en vídeos de CBR en los que unas secuencias se ven perfectas y otras muy pixeladas con la imágen bastante degradada. El tamaño final es completamente desconocido, pero preservaremos una calidad constante en todo el vídeo.


FPS (Frames per second) - cuadros por segundo


El vídeo, en realidad, no es un contínuo de imágenes, sino "fotografía en moviento" La retina tiene la propiedad de retener durante unos instantes lo último que ha visto de modo cuando vemos una secuencia de imágenes, pero que cambia rápidamente, las imágenes se superponen en nuestra retina unas sobre otras dando la sensación de continuidad y movimiento. Ahora bien, ¿cuantos cuadros por segundo (frames per second en inglés) son necesarios para crear esa sensación de continuidad? El estándard actual establece lo siguiente:


- Dibujos animados: 15 fps

- Cine: 24 fps

- Televisión PAL: 25 fps, que en realidad son 50 campos entrelazados, o semi-imágenes, por segundo

- Televisión NTSC: 29'97 fpsque en realidad son 60 campos entrelazados, o semi-imágenes, por segundo

Vídeo entrelazado (campos) / no-entrelazado


El ojo humano es "tonto" y ante una sucesión rápida de imágenes tenemos la percepción de un movimiento contínuo. Una cámara de cine no es otra cosa que una cámara de fotos que "echa fotos muy rápido". En el cine se usan 24 imágenes, o fotogramas, por segundo. Es un formato "progresivo" Eso quiere decir que se pasa de una imágen a otra rápidamente Vemos una imágen COMPLETA y, casi de inmediato, vemos la siguiente. Si tenemos en cuenta que vemos 24 imágenes por segundo, cada imágen se reproduce durante 0,04167 segundos. Las diferencias, por tanto, entre una imágen y otra son mínimas. Para ilustrar este concepto he elegido una sucesión de 4 fotogramas de dibujos animados porque los dibujos son también un formato progresivo y porque en animación se usa una velocidad de reproducción bastante inferior: 15 imágenes (o fotogramas) por segundo. Aún así, como se puede apreciar, las diferencias entre cuadro y cuadro son muy escasas.



El vídeo y la televisión tienen un funcionamiento totalmente distinto al cine. Para empezar hay dos formatos diferentes. PAL, usado en Europa, y NTSC usado en América y Japón como zonas más destacadas. En el formato PAL la velocidad de imágenes por segundo es de 25 y de 29,97 en el formato NTSC. A esta velocidad de imágenes por segundo se le llama Cuadros Por Segundo en español (CPS) ,o Frames Per Second en inglés (FPS )
Otra diferencia es que la pantalla de un televisor no funciona como un proyector de cine, que muestra imágenes "de golpe". Un televisor está dividido en líneas horizontales, 625 en televisores PAL y 525 en televisores NTSC. Estas líneas no muestran todas a la vez un mismo fotograma, sino que la imágen comienza a aparecer en las líneas superiores y sucesivamente se van rellenando el resto hasta llegar a las líneas más inferiores. Un único fotograma no es mostrado "de golpe", sino de modo secuencial. Al igual que pasaba con el cine, este proceso de actualización de líneas es tan rápido que, en principio, a nuestro ojo le pasa desapercibido y lo percibimos todo como un contínuo.


Sin embargo, este proceso presenta, o mejor dicho, presentaba un problema. Las características de los tubos de imágen de los primeros televisores hacian que cuando la imágen actualizada llegaba a las últimas líneas (las inferiores) la imágen de las líneas superiores comenzaba a desvanecerse. Fue entonces cuando surgió la idea de los "campos" y del vídeo entrelazado. El "truco" está en dividir las líneas del televisor en pares e impares. A cada grupo de líneas, par o impar, se le llama "campo". Así tendríamos el campo A o superior (Upper o Top en inglés) formado por las líneas pares (Even en inglés) y el campo B, inferior o secundario (Lower o Bottom en inglés) formado por las líneas impares (Odd en inglés)

Primero se actualiza un grupo de líneas (campo) y, acto seguido se actualiza el otro


En la imágen que presento a continuación las líneas negras formarían el campo A o superior (Upper o Top) y las líneas rojas formarían el campo B o inferior (Lower o Bottom)




Esa división de la imágen en campos tiene consecuencias TRASCENDENTALES para nosotros:


- La primera consecuencia es que estamos dividiendo un único fotograma en dos campos.Ya no vamos a tener 25 o 29,97 cps (cuadros por segundo) sino 50 o 59,94 semi-imágenes o, más correctamente, campos por segundo. De ese modo, un único fotograma (fotografía, o dibujo en este caso), que tiene un tamaño "completo" se dividiría en dos imágenes con la mitad de líneas (la mitad de resolución vertical) Eso, en principio, no representaría problema alguno si no fuera porque cada campo se corresponde a un momento distinto en el tiempo, de modo que cada campo ofrece una imágen distinta (he marcado de rojo las zonas en las que puedes fijarte para notar las diferencias)
















¿Qué ocurre si juntamos los dos campos en un mismo fotograma? Esto...















Si comparas las dos imágenes grandes con sus correspondientes de arriba verás que, en proporción, tienen el mismo ancho (resolución horizontal) pero el doble de resolución vertical porque hemos entrelazado, esto es, MEZCLADO, los dos campos. Aunque los dos campos muestran instantes en el tiempo muy próximos entre sí al sumarse las líneas de un campo con las líneas del otro en un mismo fotograma se puede apreciar claramente la diferencia.


- La segunda consecuencia que todo esto tiene para nosotros es que trabajar con vídeo entrelazado no supone problema alguno cuando el destino del vídeo sea un televisor, puesto que un televisor NECESITA vídeo entrelazado. Sin embargo, el monitor de nuestro ordenador funciona en modo progresivo, esto es, mostrando imágenes "de golpe", igual que en el cine.Siempre que reproduzcamos vídeo entrelezado en un monitor lo veremos "rayado", como en la imágen de arriba, ya que se sumarán los dos campos para mostrar el vídeo con la resolución completa. Cuando una escena es estática, no hay cambios, ambos campos coinciden, o varían mínimamente, y la reproducción parece correcta a nuestros ojos (fíjate en el banco). Sin embargo, en movimientos, sobretodo de izquierda-derecha (o viceversa) las diferencias entre un campo y otro son muy notables, tal y como hemos podido comprobar en la imágen de ejemplo.

¿Cómo reproducir correctamente vídeo entrelazado en un ordenador?


Si queremos reproducir en la PC correctamente un vídeo entrelazado hemos de usar un software de reproducción de vídeo capaz de desentrelazar al vuelo, esto es, ser capaz de desentrelazar en tiempo real lo que estamos viendo. Tal es el caso de todos los reproductores de DVD para PC (PowerDVD, WinDVD, nVidia NVDVD..). Los DVD-Video, al tener como destino un televisor, contienen vídeo entrelazado y, por tanto, todos los reproductores de DVD para PC están preparados para desentrelazar vídeo y para poder verlos correctamente. Los reproductores de DVD para PC, además de reproducir DVD-Video suelen tener la capacidad de reproducir cualquier archivo multimedia de modo que, si queremos ver una captura DV en el ordenador correctamente, no tenemos más que ir a uno de estos reproductores y cargar con ellos ese vídeo.







Capturas de vídeo con más de 288 puntos verticales ¡Cuidado!



Como hemos visto, sólo es necesario entrelazar cuando el vídeo vaya a tener como destino un televisor. También hemos visto que un televisor está formado por líneas horizontales y que dichas líneas se agrupan en campos pares e impares. Un monitor de ordenador no tiene líneas, sino puntos. La equivalencia que se establece entre un televisor y un monitor es:- 625 líneas PAL = 576 puntos verticales en el monitor- 525 líneas NTSC = 480 puntos verticales en el monitor- 288 puntos verticales = 1 campo PAL- 240 puntos verticales = 1 campo NTSC Siguiendo estas indicaciones, dependiendo del tamaño de nuestra captura, estaremos capturando con o sin entrelazado. Solamente estará entrelazado si el tamaño de captura es superior a 288 puntos verticales. A la hora de capturar, no se eligen tamaños arbitrarios. Hemos de elegir siempre, a ser posible, EL MISMO tamaño que tendrá el formato destino de nuestro vídeo. Solamente hay dos formatos estándar de vídeo con resolución inferior a 288 puntos y en los que NO se entrelaza el vídeo.- VCD y/o CVCD PAL: 352x288- VCD y/o CVCD NTSC: 352x240 Cuando capturemos con esos tamaños de pantalla lo que hacemos es capturar UN SÓLO CAMPO, de modo que el vídeo se comporta como si fuera progresivo. Como hemos pasado de 720 puntos horizontales a 352 (la mitad) no tendremos problemas de relación de aspecto ya que, si recordamos, capturar un sólo campo también significa tener la mitad de líenas y, por tanto, la mitad de resolución vertical.

Dominancia de campo

Ya sabemos que en un televisor el vídeo se muestra de modo entrelazado mezclando los dos campos disponibles (par e impar) pero no siempre se comienzan a actualizar las líneas por el mismo campo. Cada vídeo tiene una dominancia de campo. Dicha dominancia, no depende del televisor, la "acuña" la tarjeta capturadora
- No todas las tarjetas capturadoras usan la misma dominancia, pero eso sí, SIEMPRE que captures a más de 288 puntos verticales usarán siempre LA MISMA - Cuando usamos un compresor MPEG hemos de indicar correctamente cual es la dominancia del vídeo de origen porque si lo invertimos veremos un vídeo a "saltitos"


Relación de aspecto






Los televisores actuales son, o bien 4:3 o bien 16:9. Si dividimos el televisor en 12 cuadrados iguales, tendría 4 de largo por 3 de alto. Un televisor 16:9 dividido imaginariamente en 144 partes, tendría 16 de largo por 9 de altura. Estamos hablando de la relación de aspecto de vídeo analógico que se forma a partir de líneas horizontales (625 para PAL, 525 para NTSC) Por su parte, el vídeo digital procedente de videocámaras DV también tiene su propia relación de aspecto, pero al estar formado por píxeles (puntos) y no por líneas da lugar a píxeles no cuadrados. Es decir, su proporción NO es 1:1, no son cuadrados. En el caso de DV NTSC, la orientación de los píxeles es vertical dándo lugar a una relación de 0.9 y en el vídeo DV PAL los píxeles se orientan horizontalmente dándo una relación de aspecto de 1.067. Cuando trabajes con vídeo DV cuida siempre estas proporciones par evitar deformaciones.

Distintos tamaños (720x576 o 720x480 por ejemplo) dan lugar a la misma proporción de aspecto (4:3) debido a que, aunque el ancho de los televisores es el mismo, no así las líneas, teniendo una mayor resolución vertical los televisores PAL que los NTSC.
Por último, tan sólo decir que para la relación de aspecto se mantenga correctamente, el tamaño de las dos dimensiones (vertical y horizontal) ha de ser múltiplo de 16. Es por eso que se usa 352x288 para VCD PAL y no 384x288, por ejemplo


Los archivos de vídeo digital


Un CD de música contine audio en un formato muy concreto: 44.100 Hz (número de tomas por segundo), estéreo (dos pistas de audio) y 16 bits (calidad de procesado) y SIN compresión. Todo el mundo sabe que un CD de audio tiene ese formato. Cualquier variación en esos parámetros daría como resultado cualquier cosa menos un CD de audio y entonces tendríamos graves problemas para reproducirlo o, lo más probable, ni siquiera podríamos reproducirlo.


El formato MPEG


Un vídeo no es más que una sucesión de imágenes en movimiento Si comprimimos todas esas imágenes (las de un vídeo) en formato JPEG obtendríamos el formato MJPEG, o Motion JPG. Con este formato ya se logra una buena compresión con respecto al original. Partiendo del MJPEG se llegó al formato MPEG (Moving Picture Experts Group o Grupo de Expertos de Imágenes en Movimiento) La compresión MPEG supone un avance importante con respecto la compresión MJPEG al incluir un análisis de cambios entre una imágen clave, o cuadro clave, y un número determinado (suele ser 14) de imágenes posteriores. De ese modo, se comprime la imágen clave en formato JPEG y los 14 cuadros o imágenes siguientes NO SE COMPRIMEN ENTEROS, tan sólo se almacenan los cambios con respecto al primer cuadro clave tomado como referencia.
A esta secuencia de "cuadro clave + 14 cuadros de cambios" se le conoce como secuencia GOP (Group Of Pictures, o grupo de imágenes) Se pueden usar secuencias GOP más largas o cortas, pero recomiendo usar secuencias de 15, al menos hasta que tengamos un poco más de experiencia y sepamos lo que nos hacemos. Podremos conseguir la secuencia GOP de 15 cuadros de una de las siguientes formas dependiendo del compresor que usemos.
A) Definiendo 1 cuadro I (I-frame) 4 cuadros P (P-frame) y 2 cuadros B (B-frame)
B) Definiendo -> M=3 N/M =5
En cualquier caso, la secuencia final será -> I BB P BB P BB P BB P BB
Aunque la secuencia GOP se suele mantener constante a lo largo de todo el vídeo, ésto no tiene porqué ser así. Si la cadena GOP no varía, es frecuente que algunos compresores indiquen la cadena GOP que tiene el vídeo SOLAMENTE antes del primer grupo GOP. Muchos reproductores no tendrán problema para reproducir un vídeo con encabezado GOP (GOP Header) tan sólo al comienzo del vídeo, pero lo recomendable es indicar al compresor que añada un encabezado GOP antes de cualquier secuencia GOP. Presento a continuación la opción a configurar en tres de los compresores más utilizados actualemente:






Si por más que buscas entre los parámetros del compresor MPEG que utilizas no encuentras la opción que modifica la frecuencia del encabezado GOP, posiblemente lo indique antes de cada GOP de forma automática.
Da igual si ahora mismo no tienes NI IDEA de qué quiere decir eso. Confía en mí y en el apartado GOP del compresor MPEG pon lo que te he dicho.
Actualmente se usan 3 formatos de compresión:
El MPEG-1 es el usado en el VCD y CVCD (más adelante veremos qué diferencias hay) El MPEG-2 es el usado en los DVD's, SVCD's, XVCD's, CVD's y en las televisones digitales (satélite y cable) El MPEG-4 es el usado en los vídeos DivX
Ahora mismo estamos trabajando ideas básicas que son necesarias ANTES de hacer CUALQUIER COSA. Cuando hayas asimilado los conceptos de ésta sección y vayas a ponerte "manos a la obra" sería conveniente que consultaras la sección MPGEG para conocer cómo configurar los distintos parámetros de cualquier compresor MPEG. Si tan sólo vas trabajar con CD's de vídeo y/o DVD's puedes saltarte el siguiente apartado, pero es imprescinbible si vas a capturar y/o hacer algún tipo de edición.

Los formatos AVI y MOV


Es importante que entiendas cómo funciona el formato MPEG para que te des cuenta de la importante limitación que tiene a la hora de editar vídeo. Si trabajas en un programa de edicion como Adobe Premiere, Ulead Media Studio, Avid o cualquier otro necesitarás marcar un determinado cuadro (imágen) en el que realizar un corte de plano, transición, filtro, etc. Eso supone un problema porque, como hemos visto, en el formato MPEG tan sólo existe un cuadro "completo" cada 15 cuadros. Los 14 restantes sólo contienen las variaciones de ese cuadro clave. Eso no supone un problema cuando reproducimos el vídeo a velocidad normal, pero a la hora de hacer la edición nos encontramos con desagradable sorpresa de que al intentar avanzar cuadro a cuadro para marcar un determinado punto lo que hacemos en realidad es avanzar de 15 en 15 cuadros, algo bastante inaceptable (totalmente inaceptable cuando se trabaja medianamente en serio)NOTA: Las últimas versiones de Adobe Premiere, Studio y Vegas Vídeo ya NO TIENEN esa limitación y los MPEG se editan IGUAL que un AVI
Por tanto a la hora de editar vídeo lo haremos en formato AVI (Audio Video Interleave o Entrelazado de Video y Audio) para Windows o MOV para Macintosh. Lo siento por los usarios de Mac, pero he tenido la desgracia de no haber trabajado nunca en un Mac, así que sólo comentaré el formato AVI.
El formato AVI es el nativo de Windows y un vídeo será estándar, entendiendo por estándar que se reproducirá en CUALQUIER ordenador con Sistema Operativo Windows (o capaz de leer archivos AVI), siempre y cuando no apliquemos ninguna compresión al vídeo. Con el vídeo en formato AVI sin comprimir sucede lo mismo que con los archivos BMP: ocupa demasiado, casi 30 GB para una hora a un tamaño de pantalla (resolución) de 352x288, el usado para el VCD, VHS y/o Video-8. Por tanto, lo normal es que, a excepción de en la captura, se le aplique una compresión al vídeo AVI. Hay una infinidad de formatos de compresión. A estos compresores se les conoce como "codec de video" y el haber tanta variedad supone un problema porque para poder reproducir un vídeo comprimido con un códec concreto es NECESARIO tener ese códec instalado en el sistema. Eso quiere decir que si comprimimos con el códec Pegasus PICVideo, por ejemplo, será necesario que en el ordenador de destino esté instalado ese mismo códec o no podremos reproducir el vídeo.
Si a nuestras manos llega un vídeo que no podemos reproducir y no sabemos qué códec necesitamos, podemos abrirlo con el programa Virtual Dub y éste nos dará un mensaje de error indicándonos cuál es el códec que falta en nuestro sistema para poder reproducirlo



DivX y Xvid

En principio es algo "injusto" incluir aquí los formatos DivX y Xvid y no incluir otros muchos codecs de vídeo, puesto que el DivX no es más que una variante del formato AVI que usa compresión MPEG-4, pero lo cierto es que a día de hoy DivX y Xvid se han convertido en el estandar de facto de las películas en formato CD y que la inmensa mayoría de reproductores de DVD, teléfonos móviles y otros dispositivos multimedia portátiles son capaces de reproducir estos formatos. Esto es así porque DivX y Xvid son los formatos de vídeo que ofrecen la mejor relación calidad/tamaño. Es decir, logran la máxima calidad en el mínimo espacio.Sin embargo sólo es recomendable usar DivX y Xvid como formatos FINALES, esto es, que no vayamos a editar con posterioridad. La edición de DivX, y a veces incluso la reproducción, suele estar plagada de problemas.


los discos de vídeo digital


En el mundo del vídeo digital, sólamente hay dos estándares tan claros y definidos como el CD de audio, uno es el VideoCD, más conocido como VCD y otro es el MiniDV. El formato MiniDV lo dejaremos aparte en esta guía, primero porque las cámaras DV YA graban en formato DV sin hacer nada, y segundo porque normalmente nos interesa más volcar el resultado de nuestra edición a un formato compatible con un reproductor de DVD de salón, que a una cinta DV tan sólo reproducible desde una videocámara.


VCD

El formato VCD, al ser un estándar muy rígido es EL MÁS COMPATIBLE con todos los reproductores de DVD de salón, con los reproductores de VCD de salón (muy raros en Europa y América, pero extendidísimos en Asia) y, por supuesto, con cualquier Ordenador Personal. Un VCD puede ser reproducido en la INMENSA MAYORÍA de reproductores de DVD de salón y tiene unas características muy concretas. Permite almacenar en un CD-R(W) de 650 MB hasta 74 minutos de vídeo en formato MPEG-1 CBR. La CBR quiere decir Constant BitRate o flujo de datos constante, esto es, en cada segundo el VCD proporciona la misma cantidad de información. En concreto 1.150 Kbit/s para el vídeo y 224 Kbit/s para el audio, lo que da un total de 1.374 Kbit/s, tanto para PAL como para NTSC.
NOTA: No es lo mismo Kbyte que Kbit. Un Kbyte equivale a 8 Kbits, de modo que 1.150 Kbits/ serían aproximadamente 144 KB/s
Como vimos al hablar del vídeo MPEG, la secuencia GOP ha de se de 15 cuadros logrados con 1 cuadro-I (I-frame) 4 cuadros P (P-frame) y 2 cuadros-B (B-frame). En algunos compresores esta misma secuencia GOP de 15 cuadros se logra con parámetros distintos, ajustando M=3 y N/M=5
Las diferencias entre un VCD PAL y un VCD NTSC son:
- VCD PAL -> 352x288 y 25 fps (cuadros por segundo) - VCD NTSC -> 320x240 y 29,97 fps (cuadros por segundo)
El audio por su parte, ha de ir, sin excepción, comprimido en formato MPEG Layer-II (también conocido como mp2) con 44.100 Hz, estéreo y 16 bits. El mejor compresor MP2 actualmente es Toolame
Partiendo de un BUEN original y usando un BUEN compresor (para VCD ni me lo pienso, uso siempre TMPGEnc) el formato VCD logra una calidad aproximada a la de un VHS. Pero el VCD presenta dos problemas.
- Si el original no es de buena calidad es muy frecuente que el vídeo resultante esté pixelado. No obstante hemos de ser un poco "precavidos" y no dar un veredicto final sobre la calidad hasta haberlo examinado en el TELEVISOR. Está 100% garantizado que un VCD se verá MAL en un monitor de ordenador puesto que ofrecen infinitamente más resolución que un televisor y, por tanto, se aprecian mucho más los fallos de compresión. Además, no vemos la tele a al misma distancia que un monitor. Al estar más lejos en el caso de la tele algunos fallos quedarán fuera del alcance de la vista.
- Si tan sólo caben 74 minutos, para un largometraje de mayor duración habremos de emplear 2 discos que hoy día, más que un gasto, supone una molestia.
Por último, decir que los VCD's pueden hacerse de ejecución automática o crear sencillos menús para acceder a los diferentes clips que queramos incluir (que necesariamente han de ser de corta duración) Se pueden crear menús simples pero efectivos con Nero, o un poco más vistosos con Ulead DVDWorkShop


CVCD


Se le llama CVCD (Compressed VideoCD, o Video-CD comprimido) a una variante del VCD. Utilizamos los mismos tamaños de pantalla y también comprimimos con MPEG-1. La única diferencia está en que NO se usa flujo de datos constante (CBR) sino flujo de datos variable (VBR o Variable BitRate) ¿Qué quiere esto decir? Pues que podemos reservar un mayor flujo de datos o lo que es lo mismo, más información, para las escenas más complejas y menos para las más simples. Eso da lugar a un mejor aprovechamiento del espacio disponible de modo que se puede meter toda una película en un sólo disco.
El utilizar flujo de datos variable aparte de ser un formato NO estándar, lleva un problema añadido. Puesto que la cantidad de información varía en función de la complejidad del vídeo a comprimir NO podemos predecir el tamaño final del vídeo. Este problema es bastante evidente si queremos aprovechar al máximo la capacidad de un CD para que el vídeo tenga tanta calidad como sea posible.
Este problema se soluciona comprimiendo a "doble pasada". CASI todos los compresores de vídeo MPEG tienen la opción de comprimir a doble pasada. En una primera pasada analizan el vídeo pero NO comprimen. Al finalizar la primera pasada guardan esa inforamción en un archivo y aplican lo que han "estudiado" del vídeo en la segundo pasada o compresión real. Cuando comprimimos a doble pasada podremos especificar cuál es el máximo bitrate que queremos que tenga el vídeo (hasta 2.500 no suelen haber problemas) el mínimo (recomiendo algún valor en torno a los 500 Kbit/s, y en ningún caso por debajo de 300) y, lo que más nos interesa, un valor medio (average, en el todopoderoso inglis pitinglis) Mientras el compresor analiza el vídeo en la primera pasada tratará de ajustar los valores de compresión al valor medio que le hemos indicado obteniendo, con muy poco margen de error, un vídeo del tamaño deseado.
Eso está muy bien pero ¿cómo diablos sabemos el flujo de datos medio (average bitrate) que debe tener nuestro vídeo para aprovechar al máximo un CD de 700 MB? (o de 650, da lo mismo) Pues para eso están las llamadas calculadoras de bitrate. Para vídeos CVCD, SVCD y XVCD recomiendo FitCd La calidad media que obtendremos de los CVCD's es bastante aceptable, pero en algunas escenas aparecerá inevitablemente el pixelado, que será bastante evidente en un monitor de ordenador, pero que con un buen compresor queda bastante disimulado en un televisor. De todos modos, la calidad final está intimamente relacionada con la duración de la película. Si quieres que una película de 2 horas se vea bien en UN SÓLO CD, tendrás que usar un bitrate medio de unos 600 Kbit/s, aproximadamente la MITAD de un VCD estándar. Es decir, no le pidas peras al olmo. Si quieres calidad DVD, cómprate una grabadora de DVD's o graba al menos en 2 CD's. Hay que tener en cuenta además, que el CVCD es un formato NO-estándar, lo que quiere decir que NO todos los DVD's de salón lo aceptan.


SVCD


Con el SVCD conseguiremos más calidad que con el VCD o con el CVCD gracias a una mayor resolución y flujo de datos (bitrate). Es decir, que el tamaño de las imágenes es mayor, con lo que el vídeo gana en definición (a medio camino entre el VHS y el DVD/DV) y también la cantidad de información por segundo. El tamaño para SVCD PAL es de 480x576 y de 480x480 para NTSC.

El tamaño del SVCD supera los 288 puntos verticales, de modo que hemos de respetar SIEMPRE el entrelazado
El flujo de datos máximo (cantidad de Kbit/s) sube hasta los 2.450 Kbit/s. Este notable incremento en la calidad va inrremediablemente unido a una reducción del tiempo disponible para el vídeo, quedando limitado a 37 minutos en el caso de usar la máxima calidad. Aparte del tamaño, la principal diferencia del SVCD con respecto al VCD es que además del MPEG-1 CBR, admite el uso de MPEG-1/2 VBR (Variable BitRate, o flujo de datos variable) dentro de su estándar, lo que presenta los mismos problemas que acabo de comentar en el apartado CVCD en lo referente al flujo de datos variable y el ajuste de un vídeo al tamaño del disco.NOTA: Si usamos TMPGEnc u otro compresor que permita seleccionar el tipo de flujo de datos hemos de asegurarnos que sea MPEG-2 SVCD, ya que si lo hacemos simplemente MPEG-2 VBR el disco no será reconocido como SVCD en muchos reproductores y/o programas de grabación
La secuencia GOP que recomiendo utilizar con los SVCD's es la misma que para los VCD's: GOP de 15 cuadros logrados con 1 cuadro-I (I-frame) 4 cuadros P (P-frame) y 2 cuadros-B (B-frame). En algunos compresores esta misma secuencia GOP de 15 cuadros se logra con parámetros distintos, ajustando M=3 y N/M=5
La cantidad de imágenes por segundo sigue siendo la misma de siempre, 25 fps para PAL y 29,97 par NTSC.
Los SVCD's también puede visualizarse en la mayoría de DVD's de salón, aunque está menos extendido que el VCD, sobre todo en los reproductores más antiguos.
Otra característica del estándar SVCD, aparte del aumento de calidad del vídeo, es la posibilidad de incluir:
- DOS pistas de audio MPEG Layer II (mp2, 44.100 Hz o 48.000 Hz, 16 bits, estéreo), para dos idiomas, por ejemplo - Audio en formato Dolby 5.1 (reduciendo considerablemente el tiempo disponible de reproducción) - Subtítulos - Vídeo en formato 16:9 - Listas de reproducción - Menús jerárquicos (esto es, menús y submenús) y capítulos
Aunque el SVCD también es un "estándar" con sus normas recogidas, ofrece, como acabamos de ver, muchas posibilidades, lo que hace que sea más fácil "meter la pata". El VCD da menos libertad, pero también es más sencillo al tener unas normas mucho más rígidas. A eso me refería anteriormente cuando decía que el único estándar "claro" es el VCD.
El único programa que conozco para incluir subtítulos o dos pistas de audio es I-Author


CVD


Seguro que más de uno no estará de acuerdo conmigo en que haya metido este formato "dentro" del apartado SVCD y no lo haya dejado como un formato independiente. Aunque en origen son cosas distintas, lo cierto es que la única diferencia es la resolución horizontal, que se usa la misma que para VCD. Es decir, el tamaño del CVD es 352x576 para PAL 320x480 para NTSC. Por lo demás se comprime y se graba exactamente igual que un SVCD. - ¿Cuándo es mejor usar CVD?: La INMENSA mayoría de televisores están compuestos por líneas horizontales, 525 líneas para NTSC y 625 líneas para PAL, por lo tanto, la resolución vertical es más importante para un televisor que la resolución horizontal. ¿A quién quieres más a papá o a mamá? Si usamos una resolución alta tendremos más nitidez de imágen, más detalles, pero también habrá que repartir el flujo de datos disponible (bitrate) entre más puntos, luego habrá MENOS precisión para cada punto que con una resolución más baja. Con flujos de datos altos no es un problema, pero cuando usamos flujos bajos (menos de 1.500) se puede tener PEOR calidad con un tamaño mayor que con uno menor. Por otro lado, una resolución más baja tendrá más definidos sus puntos (más información para cada punto) pero, a la vez, al haber menos también tendremos menos resolución. Ahora bien... puesto que ya sabemos que un televisor normal aprecia más los puntos verticales que los horizontales podremos reducir la resolución horizontal sin que apenas se aprecie el cambio. Al tener ahora menos píxeles totales ganaremos en definición vertical que es la que más aprecia un televisor. Es decir habremos conseguido más definición (calidad) para un mismo flujo de datos. Una última ventaja del CVD es que el tamaño 352x565 o 320x480 es tratado como 1/2 D1 (formato DVD con la mitad de resolución) de modo que podrás usar tus vídeos MPEG en formato CVD para hacer una autoría de DVD. Podrás usara el MISMO vídeo para hacer CVD o DVD. Si haces primero CVD podrás pasar en un futuro esos vídeos a DVD. Si grabáramos esos vídeos primero en formato SVCD y luego queremos hacer DVD tendríamos que recomprimirlos para ajustar el tamaño con la consiguiente pérdida de calidad.
- ¿Cuándo es mejor usar SVCD?: Aunque casi todos los lectores que reproducen SVCD no tienen problemas con CVD, se pueden presentar problemas de incompatibilidad. Es evidenten que deberemos usar SVCD en esos casos. También hay que usar SVCD cuando queramos que nuestro CD contenga un menú. De momento no hay programas de grabación de CVD, sólo de SVCD, y por lo tanto crean los menús con resolución 480x576 PAL o 480x480 para NTSC y no con la resolución del CVD, 352x576 PAL o 320x480 NTSC. Al menos mi reproductor de DVD no es capaz de leer CVD's con menús. Tampoco he conseguido incluir subtítulos o dos pistas de audio con I-Author (lo que sí es posible para SVCD) Por último, he comentado que la mayoría de televisores muestran la imágen a partir de líneas y "aprecian" más la resolución vertical que la horizontal. Si tenemos un televisor de alta resolución tendremos el conflicto de siempre y no apreciaremos grandes diferencias entre uno y otro formato.


XVCD


Se le llama XVCD a todo SVCD que se sale del estándar, pero puesto que el SVCD admite en sus especificaciones MPEG-1, MPEG-2, CBR, VBR, subtítulos, audio 5.1, menús y formato panorámico 16:9 lo único "no estándar" que podemos hacer, es aumentar el bitrate por encima de los 2.500 Kbit/s. No muchos reproductores admiten esta posibilidad y el límite cambio mucho de un reproductor a otro


DVD

Si todavía piensas que las grabadoras de DVD y los DVD's grabables están caros, es posible que si le echas un vistazo a los precios actuales te lleves una agradable sorpresa. El problema actual, más que en precios, radica en formatos. DVD-R es, de momento, el más compatible, pero sólo tiene a Pioneer que lo respalde. Por otro lado, el DVD+RW (no confundir con DVD-RW el regrabable de Pioneer) ya ha dado paso al DVD+R (no confundir con DVD-R, el de Pioneer) que por lo que parece, aunque no queda recogido en el estándar DVD, tiene la misma compatibilidad que los DVD-R (o al menos muy parecida) Pioneer se encuentra luchando, literalmente, con todos los demás. Se admiten apuestas
Para crear un DVD la cosa se complica. No basta con comprimir y usar un programa de grabación cualquiera de CD's (en este caso de DVD's además). Necesitaremos una herramienta de Autor como dvdMAESTRO , Ulead DVD Workshop o DVDit. Aunque cada uno de estos programas admite distintos tipos de archivos de entrada, el estándar DVD, y por tanto TODOS estos programa lo admiten, define los archivos de un DVD de la siguiente manera.
- Tipo de vídeo: MPEG 1 o MPEG 2 - Tamaño: 352x288 ó 720x576 PAL 352x240 o 720x480 NTSC (muchos también admitirán formato 1/2 D1, 352x576 para PAL, 352x480 para NTSC) - Flujo de datos: Constante o variable de un máximo de 9.000 Kbit/s (para evitar saltos en la reproducción) - GOP: Máximo de 15 cuadros: Recomendable 4 cuadros-I y 2 cuadros-B entre cuadros-I (M=3 N/M)15) y *MUY IMPORTANTE* con encabezado de la secuencia GOP antes de cada secuencia. A esta caracterísctica también se le conoce como secuencia GOP cerrada y NO todos los compresores MPEG-2 la seleccionan por defecto, por lo que deberemos de comprobar nosotros mismos si dicha opción está seleccionada. - Audio: 48.000 Hz 16 bits estéreo. Si el audio NO va multiplexado con el vídeo (va en un archivo aparte) deberá estar el MPEG-1 layer II o AC3.


miniDVD


El miniDVD, en cuanto formato, es el MISMO que el DVD. La única diferencia está en el soporte. Un disco versátil digital (DVD) en un caso, un disco compacto (CD) en otro. Los dos inconvenientes de este formato son, por un lado el escaso tiempo de grabación por disco del que disponemos (30 minutos como MÁXIMO y con audio en mp2) y por otro que son MUY pocos los reproductores de DVD que leen este formato. Es sin lugar a dudas (al menos de momento) el formato MENOS compatible con DVD's de salón miniDVD


Formatos de cinta
DV


Aunque ocupa más tamaño que el formato DVD ofrece una calidad inigualable por lo que no es una mala idea en términos de calidad. Si pasamos de DV al disco duro, hacemos la edición en formato DV y devolvemos el vídeo a DV tendremos CASI la misma calidad que en origen. No se pierde calidad en el traspaso de la cámara el disco duro, pero sí tras la edición, ya que el resultado se codifica como DV, de modo que tenemos una compresión DV entre el mundo real y la cinta DV (compresión que realiza la videocámara) y otra compresión DV entre el disco duro y la cinta DV (compresión que realiza el software de edición). Este método de trabajo tiene tres problemas principales. Por un lado no todas las videocámadas DV admiten entrada de vídeo (conocida como DV-in), aunque es posible activarla en la mayoría, aunque no la tengan activa de fábrica (ver http://www.imagendv.com/). Por otro lado, el soporte de las cintas DV es magnético, con la consecuente degradación del material a medio plazo. Por último, pero no menos importante, trabajar con cintas DV supone reproducirlas desde la cámara por lo que necesitaremos la videocámara siempre que queramos ver la cinta.


Estoy hecho un lío... ¿qué formato elijo?

Aunque con la información aportada más arriba deberías ya ser capaz de saber qué formato necesitas, si no tienes ganas de comerte la cabeza o no te han quedado las cosas muy claras mis recomendaciones son las siguientes:
- ¿PC o DVD de salón?: Primera distinción. Si tu vídeo es para internet o si estás 100% seguro de que NUNCA JAMÁS DE LOS JAMASES lo vas a ver en un DVD de salón entonces DivX es la mejor relación calidad/tamaño. Procura trabajar siempre con vídeo no entrelazado ya que mejorará notablemente la calidad.
- DVD de salón (y PC): Si te has decidido por un formato compatible con los DVD's de salón, que también podrás ver en el PC, tenemos un abanico bastante ámplio de posibilidades donde elegir.
- ¿Lo verás SOLAMENTE en casa? Un GRAN problema de los CD's de vídeo en cualquiera de sus variantes es la compatibilidad. Para terminar de volvernos locos suele pasar que nuestros CD's de vídeo se ven en TODOS los DVD's de nuestros amigos y familiares excepto en el nuestro... lo que aumenta considareblemente el mosqueo. No menos mosqueante es hacer nuestros CD's de vídeo, verlos perfectos en casa y al llegar a casa de un amigo ponerlo y ohhhhhhhhhhhhhhh... no se lee. Si tenemos intención de "pasear" nuestro CD por diferentes DVD's de salón la cosa está clara: VCD estándar. Ni con esas podremos estar seguros de que se verá en TODOS los DVD's de salón, pero de todos los formatos posibles ese es el más compatible. En contra tiene que el VCD estándar es el formato de CD con MENOS calidad de todos. Si no queremos gastarnos una pasta en una grabadora de DVD ajo y agua (ajoderse y a aguantarse)
- Buscando la máxima calidad en casa: Si buscas la máxima calidad tendrás que prescindir de compatibilidad con otros reproductores de DVD de salón. Si nuestros CD's de vídeo son sólo para verlos en casa lo mejor será "buscarle las cosquillas" a nuestro lector para comprobar cual es la máxima calidad que admite. No obstante hagamos una reflexión: ¿A quién quieres más, a papá o a mamá? Más puntos significan más definición, más claridad de imágen. Los detalles se aprecian mejor y se "disfruta" mucho más de la imágen. De acuerdo con esto el SVCD tendría la máxima calidad al ser el formato de CD con mayor resolución (480x576 PAL 480x480 NTSC) Por otro lado tenemos el flujo de datos o bitrate. A mayor cantidad de información por segundo tendremos mejor definición de todos y cada uno de los puntos que componen la imágen. SVCD y CVCD son los que mayor bitrate admiten de forma estándar: 2.500 de máximo, aunque algunos lectores puede superar esta "barrera" y llegar hasta 3.000 y pico Ahora viene el dilema: Si tienes una misma cantidad de información por segundo (1.150 Kbit/s por ejemplo) y tienes que repartirla entre más puntos, aunque más puntos dan más resolución, la cantidad de información asignada a cada uno de ellos es inferior, con lo que la calidad se degrada mucho más que usando un tamaño de pantalla inferior. En la práctica los mejores resultados los tendríamos de la siguiente forma::Para flujo de datos bajos (menos de 2.000 Kbit/s)CVCD: MPEG -1 352x288 PAL 352x240 NTSC Flujo de datos máximo de 2500 y medio (average) inferior a 2.000 (usar calculadora de bitrates para hallar el medio) El mínimo se sitúa entre 300 y 500 Kbit/s dependiendo del valor medio. Si tenemos un valor medio igual o inferior a 700 mejor bajar el mínimo a 300. Si el valor medio supera los 1.000, mejor dejarlo en 500Para flujo de datos medio (entre 2.000 y 2.500)SVCD: MPEG-2 480x576 PAL 480x480 NTSC Flujo de datos máximo de 2.500 y medio (average) superior a 2.000 (usar calculadora de bitrates para hallar el medio) El mínimo se sitúa entre 1.000 y 1.500 Kbit/s dependiendo del valor medio. Si tenemos un valor medio cercano a 2.000 mejor bajar el mínimo a 1.000. Si el valor medio se acerca a los 2.500, mejor dejarlo en 1.500CVD: MPEG-2 352x576 PAL 352x480 NTSC Flujo de datos máximo de 2.500 y medio (average) superior a 2.000 (usar calculadora de bitrates para hallar el medio) El mínimo se sitúa entre 1.000 y 1.500 Kbit/s dependiendo del valor medio. Si tenemos un valor medio cercano a 2.000 mejor bajar el mínimo a 1.000. Si el valor medio se acerca a los 2.500, mejor dejarlo en 1.500NOTA: CVD tiene la GRAN ventaja de ser un formato compatible con DVD, de modo que los vídeos que hagamos CVD podrás ser luego reutilizados futuras autorías de DVD. Además, con flujos de datos cercanos a 2.000 Kbit/s tendremos mejores resultados que con SVCD.


¿Qué se necesita para trabajar con esos formatos?
Captura



Virtual Dub (http://www.virtualdub.org/) (ver guía de uso) - Sonic Foundry Vegas Video (http://www.sonicfoundry.com/products/NewShowProduct.asp?PID=612) - AMCap (http://noeld.com/dlvconf.htm#AMCap) (ver guía de uso)



Edición


Adobe Premiere (http://www.adobe.com) - Ulead Media Studio (http://www.ulead.com) - Sonic Foundry Vegas Video (http://www.sonicfoundry.com) - Pinnacle Studio (http://www.pinnaclesys.com)
De éstos tres Adobe Premire CS3 y Sony Vegas son los mas Pro.

Studio, por su parte, es uno de los programas más sencillos de utilizar (y en español)



Compresión



TMPGEnc (Mejor calidad, MUY lento) - Cinema Craft Encoder (mejor relación calidad/rapidez) bbMPEG (gratuíto, un poco complejo de configurar) - LSX-MPEG (Muy rápido, buena calidad) - Panasonic MPEG-1 (Excelente calidad, pero lento. Recomendado para VCD)



Grabación CD's



- Ahead Nero (recomendado, posibilidad de incluir menús) - Easy CD Creator - VCDEasy (Autoría de VCD's - freeware) - CeQuadrat VideoPack (Autoría de VCD's)



Autoría DVD's



TMPGEnc DVD Author (Sencillo y potente. Sin duda, el MEJOR para novatos, y no tan novatos) DVDMaestro (recomendado para nivel profesional) - Pinnacle Impression (Muy parecido a DVDMaestro, pero más atractivo visualmente) - Sonic Scenarist (El TODOPODEROSO. Totalmente prohibido para los novatos) - DVD WorkShop (sencillo y medianamente potente) - DVD it! o My DVD (muy simples, pero pueden valer para empezar)



Grabación de DVD's



Gear Pro DVD (**RECOMENDADO**) - Prassi PrimoDVD (Recomendado) - Nero 5.6.6.4 y posteriores - VOB Instant CD